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Abstract 

Long one-dimensional magic-integer sequences are 
used to express the phases of 10-20 primary reflexions. 
The magic-integer representation of phases is extended 
to other secondary reflexions through strong triple- 
phase relationships involving one secondary and two 
primary reflexions. In the M A G E X  procedure multiple 
magic-integer representations of the secondaries are 
sought and the error involved in their subsequent use in 
a conventional ~ map is much reduced. In view of the 
large number of primary reflexions the indices of the 
terms included in the ~' map are large and maps may be 
computed at up to 220 points. Further reflexions, in 
batches of ten or so, may be added to the initial set by 
the further use of magic integers and small-scale 
maps. When the base of estimated phases is sufficiently 
large then the phase information is extended by the 
controlled use of the tangent formula. Examples of the 
successful application of M A  G E X  are described. 

Introduction 

Declercq, Germain & Woolfson (1979) have described 
two computer-based procedures, M A G I C  and Y Z A  R C, 
for the direct solution of crystal structures, proposing 
them as complementary techniques to the well estab- 
lished M U L T A N  system. In fact it is known to be 
useful, when attempting to solve complex structures, to 
have at hand more than one tool; if one procedure fails 
then an alternative one may be successful. 

The present work extends and strengthens the 
concepts employed in M A G I C ;  the new M A G E X  
procedure can easily be linked to the M U L T A N  78 
package and will soon be available as another option to 
the previous methods. 

The success of the random approach to structure 
determination (Baggio, Woolfson, Declercq & Germain, 
1978) has shown that estimates of a fairly large set of 

phases (typically 60 to 100), even if the estimates are 
fairly approximate ones, can form a strong basis for 
phase development and refinement. In the Y Z A R C  
program, estimates are derived from the least-squares 
refinement of random phase sets. We shall now 
describe an alternative method, which is proving to be 
effective, where a large set of phases is represented by 
magic integers (White & Woolfson, 1975). 

Long maglc-integer sequences 

A theory for the efficient representation of phases by 
magic integers has been given by Main (1977, 1978). 
He showed that an efficient sequence of integers m 1, m 2, 
.... m n is one such that 2m~ = mn + 1 and the 
differences m n - m n_ 1, mn-1 - ran-2," ", m3 - m2, m2 - 
m~ form an integer progression of the general form 

f i n =  Fn_ 1 + Fn_ k. (1) 

For k = 1 the series has a common ratio r --- 2, for k = 
2 (Fibonacci's series) r has a limiting value of 1.618 
and, for higher values of k, r tends to 1. A higher 
accuracy in the representation of the phases is obtained 
with magic integers based on geometric progressions 
with higher common ratios. If we wish to represent a 
large set of phases with a r.m.s, error less than ~55 ° 
only the r = 2 or the Fibonacci series can be used. 

However, the larger is the number of phases the 
larger will be the integers and in order to represent 60 
to 100 phases one would need to use inconveniently 
large numbers. We must therefore limit the number of 
phases which are directly represented by magic 
integers. The information below should give a feeling 
for the nature of the problem. 

r Number of phases Maximum magic integer 

2 12 4095 

16 65535 

*Permanent address: Istituto di Chimica-Fisica, Corso M. 
D'Azeglio 48, 10125 Torino, Italy. 

"t" Permanent address: Wuhan University, Wuhan, China. 

0567-7394/81/040566-07501.00 

1.618 19 13529 

22 57313 
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Declercq, Germain & Woolfson (1975) described a 
technique (the primary-secondary or P S  method) to 
expand the magic-integer representation of a limited 
number of phases to the representation of a larger set. 
The phases in the secondary set are linked to two 
primaries by means of strong triple-phase relationships 
(t.p.r.'s) of the general form 

~0 s + ¢pp, +_ ~pm + b ~ 0 (mod 1), (2) 

where the phases are expressed in cycles. Through 
these t.p.r.'s the secondary reflexions may also be 
expressed in terms of magic integers but, because of the 
combined effect of the true value of the t.p.r, plus the 
error in magic-integer representation of phases, the 
precision when using a single relationship is quite low. 
To overcome this problem it is desirable to have more 
than one t.p.r, involving the same secondary reflexion 
but different pairs of primaries. We illustrate this idea 
of multiple definition o f  secondaries by the example of 
a secondary expressed in terms of two different pairs of 
primary reflexions, thus 

and also 

~0 s ~-~0p, + ~0p, + 0.5. (3) 

By substituting ~% by its magic-integer representation 
m j x  we have 

¢Ps ~- (ml + m2) x = M x  

and also 

¢Ps ~- (--m3 + m 4 ) x  + O. 5 = M ' x  + 0.5. (4) 

We shall show how the several magic-integer 
definitions of the secondary reflexion are used in such a 
way that the effect of an individual bad definition is not 
important. 

In order for the M A G E X  procedure to be effective 
the primary reflexions must satisfy a number of criteria. 
Firstly, we imagine that origin-and-enantiomorph defin- 
ing reflexions (O + E) have been chosen, either by the 
user or, say, by the C O N V E R G E N C E  routine in 
M U L T A N .  The O + E reflexions are part of the 
primary set and the others are chosen on the following 
basis: 

(i) they must be strongly linked with the O + E 
reflexions so that the origin and enantiomorph are 
tightly defined by the phases of the complete set, 

(ii) they include a large number of secondary 
reflexions defined by strong t.p.r.'s; 

(iii) each secondary should have several definitions, 
but not too many to avoid the dominance of some of 
them in the phase-determining process. From ex- 
perience the ideal number of definitions for a secon- 
dary is five, and the number should not be greater than 
nine, since this increases the computational effort 
without corresponding benefits in phase determination. 

The procedure for the selection of primary and 
secondary reflexions according to these criteria consists 
of the following steps. 

(a) Select O + E reflexions, which are part of the 
primary set. 

(b) For each strong reflexion, regarded as a potential 
new primary, enew, calculate 

I,(K) 
/2 = Z KW,, I0(x) (5) 

where the summation is over all relationships of the 
form Pold PnewS for which K(=2N-1/21E1 E 2 E31) > 
/¢ilmlt ("~ 1.0) and the ratio of Bessel functions, I~(x) /  
10(x), is the expectation value of the cosine of the t.p.r. 
The weight W, is associated with the secondary which, 
for the primary set under consideration (including 
Pnew), has n definitions. This weight is given by 

141,=0 n > 1 0  
(6) 

W,, = exp ( - In  -- 51/10) 

which favours five, but discriminates against too many, 
definitions. 

(e) The reflexion with the greatest/2 is added to the 
primary set and then (b) is repeated until the desired 
number of primaries has been selected. 

(d) Finally only those reflexions are used as 
secondaries for which 

I,(x) 
O~est ~-- Z K - -  _> allml t (~  1.5), (7) 

I0(x) 

where the summation is over all relationships linking 
the complete P S  reflexions which include the secondary 
in question. 

The ~ig map 

Having defined the set of phases in terms of magic 
integers, we now have to find the most likely values of 
the variable x associated with the integers. This is done 
by means of a Fourier map, similar to the ~ map 
described by White & Woolfson (1975), the maxima of 
which correspond to the condition that the t.p.r, cosines 
should be as close as possible to +1.0. Before giving 
the expression for the q/function, it is convenient to see 
how the t.p.r.'s are represented in terms of magic 
integers. A t.p.r, can be expressed as 

(o a "4- ~0 b q- ~0 c q- b = M x  + B ~_ 0 (mod 1), (8) 

where M is an integer combination of magic integers 
and B a constant angle. 

There are four types of relationships involving 
primary and secondary reflexions (i) PPP;  (ii) P P S ;  (iii) 
P S S ;  (iv) S S S ,  and the following notes refer to how 
they are included in the ~ map. 
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(i) Each relationship of this type has a single 
representation in magic-integer form, found by 
substituting for the primaries. 

(ii) These relationships have already been used in 
defining the secondaries and when a secondary reflex- 
ion has only one definition the corresponding t.p.r. 
reduces to a trivial identity. In the case of n multiple 
definitions of a secondary we will have ½n(n - 1) 
non-trivial and unique ways of representing by magic 
integers the t.p.r.'s involved. Thus, if a secondary has 
three definitions, we have 

S ~ - P I  + P2 + b 1 

S ~_ Pa + P4 + b2 

S ~_P5 + P6 + b3. 

There are three non-trivial and unique representations, 
viz by substituting magic integers for primaries in 

Pl + P2  + bl - P3  - P 4  - b2 ~- 0 (9) 

P I  + P2  + b l  - P5 - -  P 6  - -  b3 ~ 0 (10) 

P3 + P4 + b 2 - P s - P r - b 3 ~ - O .  (11) 

(iii) If the secondaries have nt and n2 definitions 
respectively then each P S S  relationship, which can be 
expressed in terms of five primaries, can be represented 
by magic integers in nl x n2 different ways. 

(iv) If the secondaries have n 1, n 2 and n 3 definitions 
respectively then each S S S  relationship, which can be 
expressed in terms of six primaries, can be represented 
by magic integers in nl ×//2 × n3 different ways. 

Associated with each representation of a relation- 
ship may be found a standard deviation a R which 
depends both on the expected error of the magic-integer 
representation of phases and the variances of the 
relationships. The analysis by which tr R may be derived 
is given in the Appendix. 

Each relationship is entered into the q/map with an 
inverse-variance weight, i.e. 

QR = (12) al 

where y2 = 3a~ (a,. is defined in the Appendix) is a 
scaling constant to keep QR in the range 0-1. The 
expression used for the one-dimensional Fourier map is 

Ii(x) 
~gblg(X) = Z Xlo(----~QRc°s{Zzt(Mx + B)} 

all relationships 

+ Wc°n Z C cos {4~(Kx + p - e)}. 
special reflexlons 

(13) 

The x[It(x)/ lo(x)]QR weights used in (13) are based on 
empirical, but rational, considerations. 

The second summation on the right-hand side of (13) 
is a constraint term introduced in order to give priority 
to values of x for which the phases of special reflexions 
are close to their restricted values. In space groups 
belonging to the monoclinic and orthorhombic systems, 
for instance, some classes of reflexions have phases 
restricted to 0 or 7r or to zc/2 or - ~z/2. If there is a 
phase, represented in magic-integer form as mx, which is 
known to be either 0 or 0.5 (in cycles) then we should 
expect the quantity cos(4mnx) to be close to +1; 
alternatively if mx represents a phase which is +0.25 
then we should expect cos {47r(mx + ¼)} to be close to 
+1. 

In (13) C = Xma,,/v/-n, where Xm, x is the highest x for 
the system of relationships and n = 1 for primaries or n 
= (number of multiple definitions) for secondaries. 
Wco n is an adjustable weight (0-1) chosen by the user. 
Kx  + p is the general representation of a phase by 
magic integers (for a primary, K = m and p = 0, for a 
secondary, K is a combination of integers and p is a 
constant angle); e is one of the two possible restricted 
values of the phase in cycles. 

Since the Iffblg map is calculated at an interval of 1/(4 
times the maximum index), its size is a function of the 
maximum value taken by M, which is an integer 
compounded from up to six magic integers. For long 
sequences it may be necessary to calculate the function 
at up to 220 points. Use is made of a one-dimensional 
FFT routine and the calculation is so factorized that 
the routine needs only be dimensioned for 215 points 
(Brigham, 1974). The N(~200)  highest peaks are 
found by an automatic peak-search routine and their x 
coordinates are translated through the magic integers 
into trial phases for the primary reflexions. The 
corresponding trial phases are found for the secondary 
reflexions by combining different indications with the 
tangent formula. 

The number of peaks taken from q/big is limited more 
by considerations of computer time than by features of 
the map itself; there are usually many more substantial 
peaks than are selected for phase-set development. 
Thus the 90 sets of phases developed for ergocalciferol 
(see following section and Table 1) came from ~blg 
peaks varying in height from about 1800 to 1200 while 
the three solutions came from peaks of heights in the 
lower part of the range. If a first run does not give a 
solution, and substantial peaks remain unexplored in 
~blg, then it would be sensible to make another run 
developing phases from a batch of next-largest peaks. 
This facility is not included in the present version of 
MA GEX. 

Expanding the phase set 

At this stage there may be 60 or less primary + 
secondary reflexions. Experience shows that, for many 
structures, expansion by the tangent formula from a 
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base of this size may be unsuccessful, especially when 
the phases have appreciable errors. In order to increase 
the number of phased reflexions we have used the 
following procedure, similar to that suggested by 
Woolfson (1977). 

(a) A set of ten new reflexions is chosen on the basis 
that its members have the largest values of 

1,(x) 
a = Z x  (14) 

I0(x)' 
where the summation is over all relationships linking 
the new reflexions to these already phased ('known' 
reflexions). 

(b) These ten phases are represented by a magic 
integer sequence, e.g. 

89 123 144 157 165 170 173 175 176 177 

and for each of the N sets of trial phases a Fourier map 
is calculated 

/ I (X) 
Iffsmal I = Z /~ COS {2n(Mx + B)}, (15) 

Io(x)  

where the summation is over all relationships involving 
one, two or three of the ten new reflexions and those in 
the 'known' set. 

(c) For each of the N ~'sman maps the 50 highest 
peaks are selected. A figure of merit, given by the value 
of 

Ii(xt) 
F l = ~. x t - -  cos ~93, (16) 

t Io(Xt) 

or of 

F z = Y { Y Krs cos ~o3r s - I Z Krs sin ~0xsl } (17) 
r $ $ 

is then used to select the best N'  (~ 200) sets of phases 
from the 50N individual sets. In both F~ and F z the ¢P3 is 
the value of the t.p.f, with the individual phase estimates 
inserted; in (16) t ranges over all relationships whereas 
in (17) r ranges over all reflexions and s over all t.p.r.'s 
in which reflexion r is involved. 

The process could be repeated, adding ten reflexions 
at each cycle, until any desired number of reflexions 
has been phased but in practice it has been found that it 
is unwise to expand for more than two cycles. 

Parameter-shift refinement and tangent-formula 
extension 

The phases obtained with the procedure described 
above are affected by the errors of their magic-integer 
representation and it is possible to improve the 
accuracy of their determination by a refinement 
process. As first suggested by White & Woolfson 

(1975) a rapid and effective method is that of 
parameter shift. The refinement is based on the 
maximization of the function F1. Maximizing F~ is 
equivalent to minimizing the weighted sum of the 
squares of the differences between the computed t.p.r. 
cosines and sines and their expected values. This would 
be 

i i ( x t )  }2 
F~ = ~ Jet cos ¢P3, + ~ xt sin2 ¢P3, 

t Io(xt)  t 

L I0(x,) J I0(K,) 
(18) 

where the first sum is independent of the phases and the 
second term, with a negative sign, is nothing but 2FI. 

After the refinement is complete a number (50-100) 
of the sets of refined phases is selected. This selection is 
based either on the value of F~ or, more commonly, on 
F2. The selected sets of phases are then extended and 
refined with the tangent formula. In this final process 
the initial (60-100) phases are kept fixed until the final 
refinement cycle when they are allowed to relax to fit in 
with the overall phase set. 

At this stage figures of merit are found, E maps are 
computed and interpreted using the programs of the 
M U L  T A N  system. 

Some applications o f  M A G E X  

The M A G E X  procedure has been tested on several 
known structures and on some unknown ones. The 
main features of the structure solution for some of these 
compounds are outlined in Table 1. 

Let us now consider two examples in more detail. 
The first is the structure of ergocalciferol (Hull, Leban, 
Main, White & Woolfson, 1976), which was first solved 
with great difficulty by M U L T A N ,  but so far has 
resisted all attempts at solving it in a straightforward 
way. 

The space group is P212121 and the formula C28H440 
with Z = 8. With the M U L T A N  system the 350 
reflexions with largest E values were selected and 5000 
unique ~2 relationships generated. The outcome of the 
convergence map indicated three origin- f ix ing reflex- 
ions. The enantiomorph was not fixed in this M A G E X  
run but the procedure is not affected by the initial lack 
of enantiomorph definition. 

Twelve pr imar i e s  were selected with the algorithm 
described in § 2, which gave 32 secondar ies  defined by 
85 P P S  t.p.r.'s. The magic-integer sequence was based 
on Fibonacci's series. The total number of relation- 
ships used in calculating the lffbig map was 1336, plus 
35 constraint terms (W¢o . -- O. 1, Xma x = 5.71) and the 
maximum index in the Fourier summation was 2630. 



570 A P P L I C A T I O N  O F  P H A S E  R E L A T I O N S H I P S  TO C O M P L E X  S T R U C T U R E S .  X I X  

Structures 

Table  1. Some details of structure solutions by MA GEX 

Number Number 
~bls maps of of 

Primaries Secon- Independent Con- expansion good 
O + E Others daries relationships straints reflexions solutions 

Ergocalciferol 
C28H440 3 12 32 1336 35 
P21212 I, Z = 8 

MUNICH 1 
C20H16 3 14 38 1019 19 
C2, Z -- 8 

TURSCH 11 
C 15H2404 3 17 37 241 14 
P2 l, Z =  4 

Cortisone 
C21H280 5 4 10 37 514 22 
P212,2 ,, Z = 4 

TRIPRO 
C21Hs3N306 4 13 28 332 14 
P21212 x, Z = 4 

SCHWZ1 
C54H88OI8 4 13 47 261 21 
P2,  Z = 2 

Fraction of Time on 
atoms in DEC System 

best 10 computer 
E maps (min) 

3 45/58 27 

1 39/40 17 

1 33/38 34 

11 38 25/26 41 

20 38 29/30 44 

1 33/72 31 

No expansion of  the phase  sets by  the ID'sman I maps  was 
carried out. A total  of  90 sets of 47 phases  corres- 
ponding to the highest  max ima  in ~bis were refined by 
parameter  shift and then entered into the MULTAN 78 
system for tangent- formula  extension. The five sets with 
a combined figure of  merit greater than  2.0  were 

Set number ABSFOM ~0 RESID CFOM Solution 

68 0.8723 1.303 38.05 2.1669 YES 
69 0.8882 1.659 37.19 2.1087 NO 
70 = set 69 
43 0-8633 1.249 3 8 - 6 1  2.1073 YES 
47 0-8663 1.278 38.83 2.0676 YES. 

Sets 68 and 47 gave similar maps  with two correct  
f ragments  which could have been completed by 
weighted-Fourier  recycling, but  set 43, with the lowest 
~'0, yielded a better map with two almost  complete 
molecular  f ragments  as shown in Fig. 1 together with 
the actual  structure of the molecule. 

The second example refers to the structure of  
9 ,10,11,12-dibenzopentacyclo [6 .2 .2 .0  2'6. 0 2,7 . 0 3,7 ]do-  

deca-9,11-diene (Szeimies-Seebach, Harnisch ,  
Szeimies, Van Meerssche,  Germain  & Declercq,  1978). 
This structure which was given the code name 
M U N I C H 1 ,  has space group C2 with formula  C20H16 
and Z = 8. All previous at tempts  at solving the 
structure by MULTAN, MAGIC78 or YZARC78 had 
failed and the structure was first solved by Pat terson- 
search techniques.  With 300 reflexions related by 2800 
relationships the CONVERGENCE map plus user 
intervention gave two origin and one enant iomorph-  
defining reflexion, which were used as a basis to 

generate 14 primaries and 38 secondaries (defined by 
81 PPS t.p.r.'s). Magic-integer values, based on 
Fibonacci ' s  series, were assigned to the primaries and 

~ , , ~  \ ~ • • • 

F R A G M E N T ,  • 

FRAGMENT 2 

ACTUAL 
MOLECULE 

?< 
Fig. 1. Set 43 for ergocalciferol. The black dots are false peaks 

from the E map. 
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the number of relationships used in ~big was 1019 plus 
19 constraint terms (W¢o n = 0.1, Xma x = 4.81); the 
maximum index was 4836. No expansion by ~'sm~, 
maps was performed, 100 sets of 55 phases were 
refined by parameter shift and then input into 
MULTAN78 for tangent-formula extension. Set num- 
ber 65 with the highest CFOM (~0 = 1.078, ABSFOM 
= 1.0966 and RESID = 23.24) produced an E map 
showing all but one of the atoms of the two molecules 
in the asymmetric unit, as shown in Fig. 2. 

As far as the solutions of the other structures in the 
table are concerned we just add a few comments" 

TURSCH 11 

Cortisone 

TRIPRO 

Braekman, Daloze, Dupont, Tursch, 
Declercq, Germain & Van Meerssche 
(1981). This structure was first solved by 
MAGIC78. 
17a,2 lfl-Dihydroxy-4-pregnene-3,11,20- 

trione (Declercq, Germain & Van 
Meerssche 1972). This is the test struc- 
ture issued with the M U L T A N  system. 
N-tert-butyloxycarbonyl-L-prolyl-o- 
prolyl-L-proline methyl ester (Giordano 
& Silva, 1981). This was an unknown 
structure and was solved at the same time 
both by MAGEX and by MULTAN80,  
the most recent version of MUL TAN. 

N - ' o . .  

• • 

• • 

2 

Fig. 2. Set 65 for MUNICH 1. The missing atom is filled in with a 
cross and black dots correspond to false peaks. 

SCHWZ 1 Azalomycin B (Schweizer, 1980). 
Several direct-methods attempts had 
failed with this structure but a version of 
M U L T A N  under development and 
M A G E X  both gave fragments which 
could be developed by weighted Fourier 
refinement. 

General comments 

The underlying process of M A G E X  combines two 
important features of MAGIC and Y Z A R C - t h e  use of 
magic integers to represent the phases and the 
preparation of a large starting set before entering into 
tangent-formula expansion. As shown by Main (1977, 
1978), magic integers provide an efficient way of 
exploring phase space, and even when the error in the 
magic-integer representation of the phases is rather 
large it is always less than random. The MAGEX 
procedure, by using magic integers based on high-r 
progressions and a strengthened definition of secondary 
reflexions, tends to minimize the errors in the represen- 
tation, so that the sets of phases corresponding to the 
largest peaks in the ~btg map are, in principle, 
substantially better than random phase sets. 

It is common experience that tangent-formula 
expansion and refinement starting from a small set of 
phases sometimes has a tendency to drift away from 
the correct solution. This is especially true when the 
enantiomorph is not strongly defined and the phases 
tend to the values corresponding to a centrosymmetric 
structure containing both images of the structure. 
Schemes have been designed to prevent such drift (e.g. 
Hull & Irwin, 1978) but a very effective method is to 
use the tangent formula with a large set of phases which 
are kept fixed until the last cycle of refinement. The 
large set acts as a strong anchor to prevent the drift of 
phases towards values without enantiomorph discrimi- 
nation or corresponding to a one-or-two-large-peaks 
situation ('uranium solution'). One final cycle of 
refinement will then just adjust the phases to better 
self-consistency. 

When the initial set of primary and secondary 
reflexions is not large enough the expansion procedure 
used in MA GEX is designed to avoid convergence to a 
unique but wrong solution. The selection of 50 peaks 
from the ~sma, map gives a multiplicity of solutions, 
one of which is likely to be correct. 

We are grateful for the support of this project by the 
Science Research Council. The support of the Science 
Research Council for DV and of the British Council for 
ZSH is also gratefully acknowledged. 
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A P P E N D I X  

Consider a single P P P  relationship of the form 

Z = (01 -1- ~O 2 + (if3 ~' 0. (A 1) 

The quantity X = (m I + m 2 + m3)x which represents 
the relationship can be written as 

and therefore the a 2 for the other types of relationships 
will be 

P P S  a 2 =  V + V '  + 4a  2 

P S S  a 2 = V  + V'  + V "  + 5a 2 

S S S  a ~ = V  + V'  + V "  + V " + 6 o 2  . 

o" m is set to zero if the corresponding primary is an 0 + 
E reflexion. 

X = Z + (m 1 x - (Pl) + (m2 x -- (P2) + (m3 x - -  (03) 

= Z  + 61 + 62 + 63 (A2) 

where 61, 62, 63 are the errors in representing the phases 
by magic integers. Each of the quantities on the 
right-hand side of (A 2) has an expectation value of zero 
and a known theoretical standard deviation. Hence X, 
the sum of these quantities, has an expectation value of 
zero and a probability density with variance 

a ] = V + 302, (A3) 

where V is the variance associated with the relation- 
ship (Karle & Karle, 1966) and % the r.m.s, error in 
representing a phase for the magic-integer sequence 
being used (Main, 1977). If one or more primaries in 
the t.p.r, are O + E reflexions then they are given zero 
(7 m . 

The same idea can be extended to other types of 
relationships. The variance associated with the 
definition of a secondary reflexion from two primaries 
by means of a t.p.r, will be 

a ~ =  V' + 2aZm (A4) 
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